Golden Ratio by definition:
ϕ = 5 + 1 2 \phi = \frac{\sqrt{5} + 1}{2} ϕ = 2 5 + 1
ϕ = 2 cos π 5 = 2 cos ( π 4 − π 20 ) = 2 cos ( 1 2 ( π 2 − π 10 ) ) \begin{aligned}
\phi & = 2\cos{\frac{\pi}{5}} \\[1em]
& = 2\cos\left({\frac{\pi}{4} - \frac{\pi}{20}} \right) \\[1em]
& = 2\cos\left(\frac{1}{2}\left({\frac{\pi}{2} - \frac{\pi}{10}} \right) \right) \\[1em]
\end{aligned} ϕ = 2 cos 5 π = 2 cos ( 4 π − 20 π ) = 2 cos ( 2 1 ( 2 π − 10 π ) )
Recall that
cos ( 2 x ) = 2 cos 2 ( x ) − 1 = 1 − 2 sin 2 ( x ) \cos(2x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x) cos ( 2 x ) = 2 cos 2 ( x ) − 1 = 1 − 2 sin 2 ( x )
Thus
ϕ 2 = 4 cos 2 ( 1 2 ( π 2 − π 10 ) ) 1 2 ϕ 2 − 1 = 2 cos 2 ( 1 2 ( π 2 − π 10 ) ) − 1 1 2 ϕ 2 − 1 = cos ( π 2 − π 10 ) 1 2 ϕ 2 − 1 = sin ( π 10 ) 1 2 ϕ 2 − 1 = sin ( 1 2 ( π 5 ) ) 1 − 2 ( 1 2 ϕ 2 − 1 ) 2 = 1 − 2 sin 2 ( 1 2 ( π 5 ) ) 1 − 2 ( 1 2 ϕ 2 − 1 ) 2 = cos π 5 1 − 2 ( 1 2 ϕ 2 − 1 ) 2 = 1 2 ϕ ϕ 4 − 4 ϕ 2 + ϕ + 2 = 0 ( ϕ − 2 ) ( ϕ − 1 ) ( ϕ 2 − ϕ − 1 ) = 0 \begin{aligned}
\phi^2 & = 4\cos^2\left(\frac{1}{2}\left({\frac{\pi}{2} - \frac{\pi}{10}} \right) \right) \\[1em]
\frac{1}{2}\phi^2 - 1 & = 2\cos^2\left(\frac{1}{2}\left({\frac{\pi}{2} - \frac{\pi}{10}} \right) \right) - 1 \\[1em]
\frac{1}{2}\phi^2 - 1 & = \cos\left({\frac{\pi}{2} - \frac{\pi}{10}} \right) \\[1em]
\frac{1}{2}\phi^2 - 1 & = \sin\left(\frac{\pi}{10} \right) \\[1em]
\frac{1}{2}\phi^2 - 1 & = \sin\left(\frac{1}{2}\left(\frac{\pi}{5} \right) \right) \\[1em]
1 - 2\left(\frac{1}{2}\phi^2 - 1 \right)^2 & = 1 - 2\sin^2\left(\frac{1}{2}\left(\frac{\pi}{5} \right) \right) \\[1em]
1 - 2\left(\frac{1}{2}\phi^2 - 1 \right)^2 & = \cos\frac{\pi}{5} \\[1em]
1 - 2\left(\frac{1}{2}\phi^2 - 1 \right)^2 & = \frac{1}{2}\phi \\[1em]
\phi^4 - 4\phi^2 + \phi + 2 & = 0 \\[1em]
(\phi - 2)(\phi - 1)(\phi^2 -\phi -1) & = 0 \\[1em]
\end{aligned} ϕ 2 2 1 ϕ 2 − 1 2 1 ϕ 2 − 1 2 1 ϕ 2 − 1 2 1 ϕ 2 − 1 1 − 2 ( 2 1 ϕ 2 − 1 ) 2 1 − 2 ( 2 1 ϕ 2 − 1 ) 2 1 − 2 ( 2 1 ϕ 2 − 1 ) 2 ϕ 4 − 4 ϕ 2 + ϕ + 2 ( ϕ − 2 ) ( ϕ − 1 ) ( ϕ 2 − ϕ − 1 ) = 4 cos 2 ( 2 1 ( 2 π − 10 π ) ) = 2 cos 2 ( 2 1 ( 2 π − 10 π ) ) − 1 = cos ( 2 π − 10 π ) = sin ( 10 π ) = sin ( 2 1 ( 5 π ) ) = 1 − 2 sin 2 ( 2 1 ( 5 π ) ) = cos 5 π = 2 1 ϕ = 0 = 0
The only valid root is:
ϕ = 5 + 1 2 \phi = \frac{\sqrt{5} + 1}{2} ϕ = 2 5 + 1