Proof: a better way to get the Golden Ratio

Golden Ratio by definition: ϕ=5+12 \phi = \frac{\sqrt{5} + 1}{2}

ϕ=2cosπ5=2cos(π4π20)=2cos(12(π2π10))\begin{aligned} \phi & = 2\cos{\frac{\pi}{5}} \\[1em] & = 2\cos\left({\frac{\pi}{4} - \frac{\pi}{20}} \right) \\[1em] & = 2\cos\left(\frac{1}{2}\left({\frac{\pi}{2} - \frac{\pi}{10}} \right) \right) \\[1em] \end{aligned}

Recall that cos(2x)=2cos2(x)1=12sin2(x) \cos(2x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x) Thus ϕ2=4cos2(12(π2π10))12ϕ21=2cos2(12(π2π10))112ϕ21=cos(π2π10)12ϕ21=sin(π10)12ϕ21=sin(12(π5))12(12ϕ21)2=12sin2(12(π5))12(12ϕ21)2=cosπ512(12ϕ21)2=12ϕϕ44ϕ2+ϕ+2=0(ϕ2)(ϕ1)(ϕ2ϕ1)=0\begin{aligned} \phi^2 & = 4\cos^2\left(\frac{1}{2}\left({\frac{\pi}{2} - \frac{\pi}{10}} \right) \right) \\[1em] \frac{1}{2}\phi^2 - 1 & = 2\cos^2\left(\frac{1}{2}\left({\frac{\pi}{2} - \frac{\pi}{10}} \right) \right) - 1 \\[1em] \frac{1}{2}\phi^2 - 1 & = \cos\left({\frac{\pi}{2} - \frac{\pi}{10}} \right) \\[1em] \frac{1}{2}\phi^2 - 1 & = \sin\left(\frac{\pi}{10} \right) \\[1em] \frac{1}{2}\phi^2 - 1 & = \sin\left(\frac{1}{2}\left(\frac{\pi}{5} \right) \right) \\[1em] 1 - 2\left(\frac{1}{2}\phi^2 - 1 \right)^2 & = 1 - 2\sin^2\left(\frac{1}{2}\left(\frac{\pi}{5} \right) \right) \\[1em] 1 - 2\left(\frac{1}{2}\phi^2 - 1 \right)^2 & = \cos\frac{\pi}{5} \\[1em] 1 - 2\left(\frac{1}{2}\phi^2 - 1 \right)^2 & = \frac{1}{2}\phi \\[1em] \phi^4 - 4\phi^2 + \phi + 2 & = 0 \\[1em] (\phi - 2)(\phi - 1)(\phi^2 -\phi -1) & = 0 \\[1em] \end{aligned}

The only valid root is: ϕ=5+12 \phi = \frac{\sqrt{5} + 1}{2}

295 Views,  0  Likes 0  Bookmark , 0  Comments
Please enter bookmark
     
You can comment / post without an account
just click "Comments" above
or "+" button on right top